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1 Composition of Species

1.1 Composition of generating functions

Last lecture, we defined the notion of addition and multiplication of species and saw that

FA+B = FA + FB,

FAB = FAFB.

We want to define composition of species in a way that is compatible with the generating
functions. In general, let F =

∑
fnx

n and G =
∑
gnx

n be formal power series. Then
F ◦G =

∑
fnG(x)n is well-defined if G(0) = 0.

Definition 1.1. Let F,G be species where G(∅) = ∅. Then we define the composition
F ◦ G as follows. Partition S into blocks, and take the set of structures with every block
having G-structures and the set of blocks having F structures. In other words,

(F ◦G)(S) =
∐

{B1,...,Bk}∈Π(S)

F ({B1, . . . , Bk})×
∏
i

G(Bi).

Proposition 1.1. Let F,G be species where G(∅) = ∅.

FF◦G = FF ◦ FG

Proof. Let (F ◦G)k be the subspecies where (F ◦G)k(S) is the set of (F ◦G)k(S) structures
with k blocks. Then

|(F ◦G)k(S)| = F ([k]) · 1

k!
|Gk(S)|

because Gk(S) is the set of G-structures on S partitioned into k (ordered) blocks, and
there are k! orderings of the blocks. We can then compute

FF◦G(x) = F (∅) +
∞∑
n=1

(
n∑
k=1

1

k!
F ([k])|Gk([n])|

)
xn

n!
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= F (∅) +

∞∑
k=1

∞∑
n=k

1

k!
F ([k])|Gk([n])|x

n

n!

Note that FGk(x) only has terms starting at xk onwards because |G(∅)| = 0, so we may
identify the inner sum as FGk(x).

= F (∅) +
∞∑
k=1

F ([k])
FGk(x)

k!

= F (∅) +
∞∑
k=1

F ([k])
(FG(x))k

k!

= (FF ◦ FG)(x).

1.2 Examples of species composition

1.2.1 Partitions and Stirling numbers

Example 1.1. Let Π(S) = {partitions of S}. Then

Π ∼= E ◦ (E −X0),

which gives us that
Π(x) = FE ◦ FE−X0 = ee

x−1.

Example 1.2. Look at the Stirling number S(n, k), the number of partitions of [n] into k
blocks. We saw earlier that k!S(n, k) =

∣∣(E −X0)k([n])
∣∣. We had

∞∑
n=0

S(n, k)
xn

n!
=

(ex − 1)k

k!
.

Summing over k would give us the same result as in the previous example, that

Π(x) = ee
x−1.

Consider E, the trivial species, with weight tk for the unique structure on S if |S| = k.
Then

E(x; t) =
∑
n

tn
xn

n!
= etx.

We can use this to say

E(x; t) ◦x (E(x)− 1) = etx ◦x (ex − 1) = et(e
x−1),

and so the weighted generating function for Stirling numbers is∑
n,k

S(n, k)tk
xn

n!
= et(e

x−1).
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1.2.2 Permutations and cyclic orderings

Example 1.3. Let P (S) = {permutations of S} and C(S) = {cyclic orderings of S}.
Then P ([n]) = n!, and C([n]) = (n − 1)!, where by convention, there is no cyclic or-
dering on the empty set. The statement that permutations have disjoint cycle structures
gives us

P ∼= E ◦ C.
So we get that

P (x) = eC(x).

We already know that P (x) = 1
1−x , so we get

C(x) = − log(1− x).

Alternatively, we could use the fact that C([n]) = (n− 1)!, which gives us that

C(x) =
∞∑
n=1

(n− 1)!
xn

n!
=
∞∑
n=1

xn

n
= − log(1− x).

We can use this information to get other interesting generating functions. Consider the
species Ceven which only counts the cyclic orderings of sets of even numbered elements.
Then

Ceven(x) =
∞∑
n=1

(x2)n

2n
= −1

2
log(1− x2).

Then the number of permutations into cycles of even lengths is Peven
∼= E ◦ Ceven, and we

get
Peven(x) = eCeven(x) = (1− x2)−1/2.

Example 1.4. Weight a permutation σ ∈ Sn with Pγ(σ) = p
|{1-cycles}|
1 p

|{2-cycles}|
2 · · · . For

now, treat the pk as new variables, but they will end up being symmetric functions. The
exponential generating function with all these weights is

P (x; p1, p2, . . . ) =
∑
n

(∑
σ∈Sn

pγ(σ)

)
xn

n!
.

For example, for n = 3, the inner term is p3
1 + 3p2p1 + 2p3. We say that this is equal to

eC(x;p1,p2.... ), where

C(x; p1, p2. . . . ) =
∞∑
n=1

pn
xn

n

is the generating function for cyclic orderings weighting the cycle structure. We have

P (x; p1, p2, . . . ) = exp

( ∞∑
n=1

pn
xn

n

)
=

∞∏
n=1

exp

(
pn
xn

n

)
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=

∞∏
n=1

∞∑
rn=0

prnn
xrnn

nrnrn!

=
∑

r1,r2,...

(pr11 p
r2
2 · · · )

xr1+2r2+···∏
k rk!n

rk

=
∞∑
n=0

∑
|λ|=n

λ=(1r1 ,2r2 ,... )

pλn!

zλ

xn

n!
.

This gives us that ∑
|λ|=n

pγ(σ) =
n!

zλ
pλ

is the number of permutations σ ∈ Sn such that γ(σ) = λ.
If we view pk as the k-th power sum symmetric function, then

1

n!

∑
σ∈Sn

pγ(σ) = F (1) = hn,

so

P (x; p1, p2, . . . ) = H(x) =

∞∑
n=1

hnx
n,

the generating function for the homogeneous symmetric functions.
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