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1 Composition of Species

1.1 Composition of generating functions
Last lecture, we defined the notion of addition and multiplication of species and saw that
Far =Fa+ Fp,

Fap = FaFB.

We want to define composition of species in a way that is compatible with the generating
functions. In general, let F' = > f,2™ and G = ) g,a" be formal power series. Then
FoG=) fuG(z)" is well-defined if G(0) = 0.

Definition 1.1. Let F,G be species where G(&) = @&. Then we define the composition
F o G as follows. Partition S into blocks, and take the set of structures with every block
having G-structures and the set of blocks having F' structures. In other words,

(FoG)(S) = 11 F({Bu,...,By}) x HG(B

Proposition 1.1. Let F,G be species where G(&) = &.
Frog = FroFg

Proof. Let (F oQ)y be the subspecies where (FoG)(S) is the set of (FoG)(S) structures
with k blocks. Then

(FoG)(S)| = F(IH) - 5GH(S)

because G*(S) is the set of G-structures on S partitioned into k (ordered) blocks, and
there are k! orderings of the blocks. We can then compute

Froale +Z(Zk, HIGH( J>|)j’ff
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Note that Fgi(x) only has terms starting at 2* onwards because |G(@)| = 0, so we may
identify the inner sum as Fgx ().

= (Fr o Fg)(z). O

1.2 Examples of species composition

1.2.1 Partitions and Stirling numbers

Example 1.1. Let II(S) = {partitions of S}. Then
M= Eo(E - Xp),

which gives us that
H(x) =FgpoFe-x, = e L

Example 1.2. Look at the Stirling number S(n, k), the number of partitions of [n] into k
blocks. We saw earlier that k!S(n, k) = ’(E - Xo)k([n])| We had

”_(e —1)
ank o

Summing over k would give us the same result as in the previous example, that
I(x) = e L.

Consider E, the trivial species, with weight ¢* for the unique structure on S if |S| = k.
Then "
_ Ztni _ etx
N nl
n

We can use this to say
E(.’L'7t> Og (E(ZU) — 1) = etx O (ex _ 1) — et(ez—l),

and so the weighted generating function for Stirling numbers is

x" oo
E S(n, k)tkﬁ = €t( 1).
n,k



1.2.2 Permutations and cyclic orderings

Example 1.3. Let P(S) = {permutations of S} and C(S) = {cyclic orderings of S}.
Then P([n]) = n!, and C([n]) = (n — 1)!, where by convention, there is no cyclic or-
dering on the empty set. The statement that permutations have disjoint cycle structures
gives us

P2 FEoC(C.

So we get that
P(z) = @),

We already know that P(z) = 1, so we get
C(z) = —log(l — x).

Alternatively, we could use the fact that C([n]) = (n — 1)!, which gives us that

C’(m):Z(n—l ‘— Z%:—logl—x)

n=1

We can use this information to get other interesting generating functions. Consider the
species Ceven Which only counts the cyclic orderings of sets of even numbered elements.
Then

= (22)" 1
Ceven(x) = Z (272 = _§log(1 - 1"2)'
n=1

Then the number of permutations into cycles of even lengths is Payen = E 0 Ceyen, and we
get
Peven(x) = eceven(m) = (1 - LE2)71/2.

Example 1.4. Weight a permutation o € S, with P, ) = p'l{I'Cydes}|p|2{2'cydes}‘ ... For

now, treat the py as new variables, but they will end up being symmetric functions. The
exponential generating function with all these weights is

P(z;p1,p2,...) = Z (Z p'y(g)) %T:

n O'ESn

For example, for n = 3, the inner term is p} + 3pop1 + 2p3. We say that this is equal to
eC(I;Pl,qu-- ), Where

oo xn
C(fﬂ;pl,pz-'--)Zan;

is the generating function for cyclic orderings weighting the cycle structure. We have

P(x;p1,pa, ... ) = exp (2:11%”) = [ exp (pnn>
n=

n=1
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A=(1"1,272 )

This gives us that

> by =
Py(o) = —Px
[A|l=n A

is the number of permutations o € S, such that y(o) = A.
If we view pj as the k-th power sum symmetric function, then

1
E Z Pyo) = F(]]-) = hn,
" 0ESy

SO

P(z;p1,p2,...) =H(z) = Zhnzzn,
n=1

the generating function for the homogeneous symmetric functions.



